
D4.12
Embedded Transform TF Library

Software Release Y2

Grant agreement no. 780785
Project acronym OFERA (micro-ROS)
Project full title Open Framework for Embedded Robot Applications
Deliverable number D4.12
Deliverable name Embedded Transform TF Library – Software Release Y2
Date December 2019
Dissemination level public
Workpackage and task 4.4
Author Bosch
Contributors eProsima
Keywords micro-ROS, robotics, ROS, microcontrollers
Abstract Task 4.4 has been stopped during the project review on 10

September 2019 in Luxembourg. Instead, a new Task 7.5
on community demos has been introduced. Since the cor-
responding amendment has not been implemented yet,
the present deliverable contains the deliverable for this
new Task 7.5 as well as a new deliverable on the software
release of runtime tracing tools.

D4.12: Embedded Transform TF Library – Software Release Y2

1 Notice

In the Task 4.4, an agent-side filter to minimize the data communicated from the TF subsystem
to the microcontroller has been developed in 2018 and beginning of 2019. With this filter, two of
the four subtasks have been completed successfully. Our first experiences in the demos and use-
cases revealed that the remaining two subtasks (real-time capable TF and efficient transformation
computations) are of very low priority for most applications.

In the project review on 10 September 2019, we therefore proposed to the project officer and the
reviewers to stop this task in favor of a new task on two easily reproducible demos for the ROS
community. As a consequence, the deliverables D4.12 (D48) and D 4.13 (D49) shall be replaced
by two new deliverables on open-source software releases of community demos. The project officer
and reviewers agreed to this proposal. As the corresponding amendment has not been implemented
yet as of December 2019, the documentation on the open-source releases of the community demos
(preliminary deliverable number D7.16) will be published as the present deliverable.

During the project review, we furthermore proposed to introduce a new deliverable on the software
release of runtime tracing tools (preliminary number D5.7), which have been implemented by Bosch
in Task 5.3. Again, since the amendment has not been implemented yet, this deliverable in included
here.

1

D7.16 (preliminary number)

Community Demos
Software Release Y2

Grant agreement no. 780785
Project acronym OFERA (micro-ROS)
Project full title Open Framework for Embedded Robot Applications
Deliverable number D7.16 (preliminary number)
Deliverable name Community Demos – Software Release Y2
Date December 2019
Dissemination level public
Workpackage and task 7
Author Ralph Lange (Bosch)
Contributors Ingo Lütkebohle (Bosch), Borja Outerelo (eProsima)
Keywords micro-ROS, robotics, ROS, microcontrollers, community,

demo, Kobuki, Crazyflie
Abstract This document provides links to the released software

and documentation on the community demos based on a
Kobuki (Turtlebot 2) robot and a Crazyflie quadcopter as
part of the dissemination and communication activities
in Work Package 7.

D7.16 (preliminary number): Community Demos – Software Release Y2

Contents

1 Overview to Results 2

2 Links to Software Repositories 2

2.1 Software for Kobuki Community Demo . 2

2.2 Software for Crazyflie Demo and the Combined Demo 2

3 Annex 1: Webpage on Kobuki Demo 3

4 Annex 2: Webpage on Crazyflie Demo 4

4.1 Index . 4

4.2 Setup . 4

4.3 Required Hardware . 6

4.4 Installation . 7

4.4.1 Install external ROS 2 nodes . 7

4.4.2 Build and flash Crazyflie 2.1 firmware . 8

4.4.3 Install Crazyflie Client + Bridge . 8

4.4.4 Build and flash Kobuki Turtlebot 2 firmware 9

4.5 Usage . 10

4.5.1 Run Kobuki Turtlebot 2 Node . 10

4.5.2 Run Crazyflie 2.1 Node . 10

4.5.3 Run external ROS 2 nodes . 11

4.5.4 Run RVIZ visualizers . 11

1

D7.16 (preliminary number): Community Demos – Software Release Y2

1 Overview to Results

This document provides links to the released software and documentation for the new deliverable
Community Demos - Software Release Y2 as part of the dissemination and communication activities in
Work Package 7. The decision to introduce this deliverable for the second year (and an updated ver-
sion for third year) of OFERA was made at the project review on 10 September 2019 in Luxembourg.

As an entry-point to all software and documentation, we created dedicated webpages on the micro-
ROS website: micro-ros.github.io/kobuki_demo/ and micro-ros.github.io/crazyflie_demo/

The annex includes a copy of these webpages and a copy of the major documentation file of this
software release.

2 Links to Software Repositories

2.1 Software for Kobuki Community Demo

The description of the demo setup and the ROS 2 code (launch files, URDF, etc.) for the laptop for
controlling and visualizing the robot:

• Git repository: https://github.com/micro-ROS/micro-ROS_kobuki_demo
Branch: master
Main package: micro-ros_kobuki_demo_remote
Latest commit as of December 2019: Commit d193989

The micro-ROS-based application code for the Kobuki robot, i.e. for the attached Olimex STM32-
E407 board:

• Git repository: https://github.com/micro-ROS/apps
Branch: demo/kobuki
Subfolder of executable: apps/examples/kobuki/
Latest commit as of December 2019: Commit ab1e5a5

2.2 Software for Crazyflie Demo and the Combined Demo

The micro-ROS-based application code (i.e. firmware based on FreeRTOS) for the Crazyflie quad-
copter:

• Git repository: https://github.com/eProsima/crazyflie-firmware/
Branch: crazyflie_microros
Latest commit as of December 2019: Commit 54a5b8f

2

https://micro-ros.github.io/kobuki_demo/
https://micro-ros.github.io/crazyflie_demo/
https://github.com/micro-ROS/micro-ROS_kobuki_demo
https://github.com/micro-ROS/micro-ROS_kobuki_demo/tree/master
https://github.com/micro-ROS/micro-ROS_kobuki_demo/tree/master/micro-ros_kobuki_demo_remote
https://github.com/micro-ROS/micro-ROS_kobuki_demo/commit/d193989ab5a419fc5a316101097129dbbe8a4136
https://github.com/micro-ROS/apps
https://github.com/micro-ROS/apps/tree/demo/kobuki
https://github.com/micro-ROS/apps/tree/demo/kobuki/examples/kobuki
https://github.com/micro-ROS/apps/commit/ab1e5a594d7e0d461151263ae6cb3c53978e6ef5
https://github.com/eProsima/crazyflie-firmware/
https://github.com/eProsima/crazyflie-firmware/tree/crazyflie_microros
https://github.com/eProsima/crazyflie-firmware/commit/54a5b8f23cb937f6f62492ea0180e5e364a8468d

D7.16 (preliminary number): Community Demos – Software Release Y2

Extensions to micro-ROS for real-time operating system FreeRTOS:

• Git repository: https://github.com/micro-ROS/crazyflie_extensions/
Branch: master
Latest commit as of December 2019: Commit de1ce3a

Visualization of crazyflie quadcopter with rviz and ROS nodes for controlling the Kobuki robot by
Crazyflie in combined demo:

• Git repository: https://github.com/micro-ROS/micro-ROS_kobuki_demo/
Branch: crazyflie_demo
Main package: micro-ros_crazyflie_demo_remote
Latest commit as of December 2019: Commit 4640190

3 Annex 1: Webpage on Kobuki Demo

Content of micro-ros.github.io/kobuki_demo/ from 18th December 2019.

The micro-ROS Kobuki Demo illustrates the use of micro-ROS on the Kobuki platform, which is the
mobile base of the well-known Turtlebot 2 research robot.

The basic idea and working principle of this demo is as follows: Instead of a laptop running ROS,
the Kobuki is equipped with a STM32F4 microcontroller only. This STM32F4 runs the micro-ROS
stack and a port of the thin_kobuki driver, which interacts with the robot’s firmware (which runs on
a built-in microcontroller). The STM32F4 communicates the sensor data via DDS-XRCE to a remote
laptop running a standard ROS 2 stack, the micro-ROS agent and rviz. At the same time, using the
other direction of communication, the Kobuki can be remote-controlled.

To run this demo yourself, follow the instructions given in https://github.com/micro-ROS/
micro-ROS_kobuki_demo

3

https://github.com/micro-ROS/crazyflie_extensions/
https://github.com/micro-ROS/crazyflie_extensions/
https://github.com/micro-ROS/crazyflie_extensions/commit/de1ce3a7e304e02ef82de5d0e9825ce8e305f41c
https://github.com/micro-ROS/micro-ROS_kobuki_demo/
https://github.com/micro-ROS/micro-ROS_kobuki_demo/tree/crazyflie_demo
https://github.com/micro-ROS/micro-ROS_kobuki_demo/tree/crazyflie_demo/micro-ros_crazyflie_demo_remote
https://github.com/micro-ROS/micro-ROS_kobuki_demo/commit/464019079fcedc7d69d74894cc7921031df43432
https://micro-ros.github.io/kobuki_demo/
https://github.com/Lab-RoCoCo/thin_drivers
https://github.com/micro-ROS/micro-ROS_kobuki_demo
https://github.com/micro-ROS/micro-ROS_kobuki_demo

D7.16 (preliminary number): Community Demos – Software Release Y2

4 Annex 2: Webpage on Crazyflie Demo

Content of micro-ros.github.io/crazyflie_demo/ from 18th December 2019.

This demo aims to expose a micro-ROS use case. It runs on a pair of embedded devices: a Crazyflie
2.1 drone, used as a user controller, and a Kobuki Turtlebot 2 as a mobile and controlled device.

Both of them rely on micro-ROS publication and subscription mechanisms and use an underlying
Micro XRCE-DSS client.

This demo also includes conventional ROS 2 tooling as a demonstration of integration with ROS 2.
We use Gazebo, RVIZ and simple ROS 2 nodes (aka external nodes) acting as data converters.

This demo was developed taking as base the Kobuki demo.

4.1 Index

• Installation
• Install external ROS 2 nodes
• Build and flash Crazyflie 2.1 firmware
• Install Crazyflie Client + Bridge
• Build and flash Kobuki Turtlebot 2 firmware
• Usage
• Run Kobuki Turtlebot 2 Node
• Run Crazyflie 2.1 Node
• Run external ROS 2 nodes
• Run RVIZ visualizers

4.2 Setup

The proposed demo is composed of different kind of messages and topics.

The Crazyflie 2.1 drone relies on ST STM32F405 MCU running FreeRTOS. Using the RTOS
capabilities and the integrated radio communication device, the drone can run a node that
publishes: - its own relative position as a 3D vector (X, Y and Z) using a geometry_msg/Point32
message type on /drone/odometry topic. - its own attitude as a 3D vector (pitch, roll and yaw) using a
geometry_msg/Point32 message type on /drone/attitude topic.

4

https://micro-ros.github.io/crazyflie_demo/
https://www.bitcraze.io/crazyflie-2-1/
https://www.bitcraze.io/crazyflie-2-1/
https://www.turtlebot.com/turtlebot2/
https://micro-xrce-dds.readthedocs.io/en/latest/
https://www.st.com/en/microcontrollers-microprocessors/stm32f405-415.html
https://www.freertos.org/

D7.16 (preliminary number): Community Demos – Software Release Y2

The Kobuki Turtlebot 2 robot is controlled using a UART protocol through a custom DB25 connec-
tor. The micro-ROS node runs on an Olimex STM32-E407 board attached to that UART port. This
hardware features a ST STM32F407 MCU running Nuttx RTOS. In the same way, this node can com-
municate with the robot (UART) and with the ROS2 world (integrated Ethernet). Its used topics
are: - a subscription on /cmd_vel topic (geometry_msg/Twist message type) to receive the controlling
angular and linear velocity. - a publication on /robot_pose topic (geometry_msg/Vector3 message type)
which includes X position, Y position and robot yaw.

The external ROS 2 nodes are rclpy tools with some different functionalities: - attitude_to_vel.py
- Converts Crazyflie /drone/attitude to Kobuki Turtlebot 2 /cmd_vel so that drone pitch is mapped
to robot linear velocity and drone roll to angular valocity. - Converts Crazyflie publications on
/drone/attitude and /drone/attitude topics to tf2_msgs/TFMessage messages (required by RVIZ visualizer)
- odom_to_tf.py - Converts Kobuki Turtlebot 2 publications on /robot_pose topic to tf2_msgs/TFMessage
messages (required by RVIZ visualizer).

The following image shows the described setup.

5

https://www.st.com/en/microcontrollers-microprocessors/stm32f407-417.html
https://nuttx.org/

D7.16 (preliminary number): Community Demos – Software Release Y2

4.3 Required Hardware

This setup uses the following hardware:

Item

Kobuki Turtlebot 2 Link
Olimex STM32-E407 Link

6

https://www.turtlebot.com/turtlebot2/
https://www.olimex.com/Products/ARM/ST/STM32-E407/open-source-hardware

D7.16 (preliminary number): Community Demos – Software Release Y2

Item

Olimex ARM-USB-TINY-H Link
Crazyflie 2.1 Link
Flow Desk v2 Link
Debug adapter Link
Crazyradio PA 2.4 GHz USB dongle Link
Additional battery + charger (optional) Link

4.4 Installation

4.4.1 Install external ROS 2 nodes

Install Micro XCRE-DDS. Recommended procedure:

git clone https://github.com/eProsima/Micro-XRCE-DDS.git -b v1.1.0
cd Micro-XRCE-DDS
mkdir build && cd build
cmake ..
make
sudo make install

Create a workspace folder for this demo:

mkdir -p crazyflie_demo/src
cd crazyflie_demo

Clone this repo:

git clone --single-branch --branch crazyflie_demo https://github.com/micro-ROS/micro-ROS_kobuki_demo src

Install Gazebo. Recommended procedure:

curl -sSL http://get.gazebosim.org | sh

Install gazebo_ros_pkgs (ROS 2). Recommended procedure:

source /opt/ros/dashing/setup.bash
wget https://bitbucket.org/api/2.0/snippets/chapulina/geRKyA/f02dcd15c2c3b83b2d6aac00afe281162800da74/files/ros2.yaml
vcs import src < ros2.yaml
rosdep update && rosdep install --from-paths src --ignore-src -r -y
rm ros2.yaml

Build the project:

source /opt/ros/dashing/setup.bash
rosdep update && rosdep install --from-paths src --ignore-src -r -y
colcon build --symlink-install

7

https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY-H/
https://store.bitcraze.io/products/crazyflie-2-1
https://store.bitcraze.io/collections/decks/products/flow-deck-v2
https://store.bitcraze.io/collections/accessories/products/debug-adapter
https://store.bitcraze.io/collections/accessories/products/crazyradio-pa
https://store.bitcraze.io/collections/accessories/products/240mah-lipo-battery-including-500ma-usb-charger
https://micro-xrce-dds.readthedocs.io/en/latest/installation.html
http://gazebosim.org/tutorials?tut=install_ubuntu&cat=install#InstallGazebousingUbuntupackages
http://gazebosim.org/tutorials?tut=ros2_installing&cat=connect_ros

D7.16 (preliminary number): Community Demos – Software Release Y2

4.4.2 Build and flash Crazyflie 2.1 firmware

Install the toolchain:

sudo add-apt-repository ppa:team-gcc-arm-embedded/ppa
sudo apt-get update
sudo apt install gcc-arm-embedded dfu-util

Download and build the Crazyflie 2.1 firmware repository:

mkdir crazyflie_firmware
git clone https://github.com/eProsima/crazyflie-firmware -b crazyflie_demo
cd crazyflie_firmware
git submodule init
git submodule update
make PLATFORM=cf2

Unplug the Crazyflie 2.1 battery
Push the reset button while connecting the USB power supply.
The top-left blue LED blinks, first slowly and after 4 seconds sightly faster, now it is in DFU pro-
gramming mode. Check it with lsusb:

Bus 001 Device 051: ID 0483:df11 STMicroelectronics STM Device in DFU Mode

Flash the device:

sudo dfu-util -d 0483:df11 -a 0 -s 0x08000000 -D cf2.bin

Unplug and plug the Crazyflie 2.1 power to exit DFU mode.

4.4.3 Install Crazyflie Client + Bridge

Install dependencies:

sudo apt-get install libusb-1.0-0-dev
sudo apt-get install python3 python3-pip python3-pyqt5 python3-pyqt5.qtsvg

Fix permissions for the Crazyradio PA 2.4 GHz USB dongle (restart required for apply changes):

sudo groupadd plugdev
sudo usermod -a -G plugdev $USER
sudo echo SUBSYSTEM==\"usb\", ATTRS{idVendor}==\"1915\", ATTRS{idProduct}==\"7777\", \
MODE=\"0664\", GROUP=\"plugdev\" > /etc/udev/rules.d/99-crazyradio.rules
sudo echo SUBSYSTEM==\"usb\", ATTRS{idVendor}==\"0483\", ATTRS{idProduct}==\"5740\", \
MODE=\"0664\", GROUP=\"plugdev\" > /etc/udev/rules.d/99-crazyflie.rules

Clone the repo dependencies:

git clone -b Micro-XRCE-DDS_Bridge https://github.com/eProsima/crazyflie-clients-python

8

D7.16 (preliminary number): Community Demos – Software Release Y2

4.4.4 Build and flash Kobuki Turtlebot 2 firmware

Create a workspace for building micro-ROS:

source /opt/ros/crystal/setup.bash
sudo apt install python-rosdep curl flex ed gperf openocd automake ed bison libncurses5-dev gcc-arm-none-eabi clang clang-tidy usbutils
mkdir -p kobuki-firmware/src
cd kobuki-firmware
git clone --recursive -b crazyflie_demo https://github.com/micro-ROS/micro-ros-build.git src/micro-ros-build
colcon build --packages-select micro_ros_setup
source install/local_setup.bash

Build micro-ROS Agent:

ros2 run micro_ros_setup create_agent_ws.sh
colcon build
source install/local_setup.sh

Install tools:

git clone https://bitbucket.org/nuttx/tools.git ~/tools
pushd ~/tools/kconfig-frontends >/dev/null
./configure --enable-mconf --disable-nconf --disable-gconf --disable-qconf
LD_RUN_PATH=/usr/local/lib && make && make install && ldconfig
popd >/dev/null

Build Olimex STM32-E407 firmware:

ros2 run micro_ros_setup create_firmware_ws.sh
cd firmware/NuttX
tools/configure.sh configs/olimex-stm32-e407/uros
cd ../..

#Put here your agent IP and port
find ./firmware/mcu_ws/ -name rmw_microxrcedds.config -exec sed -i "s/CONFIG_IP=127.0.0.1/CONFIG_IP=192.168.8.10/g" {} \;
find ./firmware/mcu_ws/ -name rmw_microxrcedds.config -exec sed -i "s/CONFIG_PORT=8888/CONFIG_PORT=9999/g" {} \;

ros2 run micro_ros_setup build_firmware.sh

Connect Olimex ARM-USB-TINY-H JTAG debugger to Olimex STM32-E407 and flash the board:

cd firmware/NuttX
scripts/flash.sh olimex-stm32-e407

9

D7.16 (preliminary number): Community Demos – Software Release Y2

4.5 Usage

After installation, the following packages should be present in your system:

.
+-- Micro-XRCE-DDS # used for installing Micro-XRCE-DDS
+-- crazyflie_demo
+-- crazyflie-firmware # used for building and flashing Crazyflie 2.1 firmware
+-- kobuki-firmware # used for building and flashing Kobuki Turtlebot 2 firmware
+-- crazyflie-clients-python

Make sure that all ROS 2 or micro-ROS nodes created along with the following steps can reach each
other using its network interfaces.

4.5.1 Run Kobuki Turtlebot 2 Node

TODO: Explain data and power connections between Kobuki Turtlebot 2, Olimex STM32-E407 and
MiniRouter.

Run the micro-ROS Agent:

cd kobuki-firmware
source /opt/ros/crystal/setup.bash && source install/local_setup.bash
ros2 run micro_ros_agent micro_ros_agent udp 9999

micro-ROS Agent should receive an incoming client connection and /robot_pose topic should be pub-
lished. Check it with ros2 topic echo /robot_pose

4.5.2 Run Crazyflie 2.1 Node

Connect Crazyradio PA 2.4 GHz USB dongle and turn on Crazyflie 2.1 drone.

Run the Crazyflie Client + Bridge:

cd crazyflie-clients-python
python3 bin/cfclient

This command should open the Crazyflie Client and print a serial device path in the terminal (some-
thing like /dev/pts/0).

Run (in another prompt) a Micro XRCE-DDS Agent:

MicroXRCEAgent serial --dev [serial device]

Micro XRCE-DDS Agent should receive an incoming client connection and /drone/attitude and
/drone/position topics should be published. Check it with ros2 topic echo /drone/attitude and
ros2 topic echo /drone/position

10

D7.16 (preliminary number): Community Demos – Software Release Y2

4.5.3 Run external ROS 2 nodes

Run commands:

cd crazyflie_demo
source /opt/ros/crystal/setup.bash && source install/local_setup.bash
ros2 run micro-ros_crazyflie_demo_remote attitude_to_vel

Topic /cmd_vel should be published, and the Kobuki Turtlebot 2 should start moving. Check it with
ros2 topic echo /cmd_vel

4.5.4 Run RVIZ visualizers

Run complete visualizer:

cd crazyflie_demo
source /opt/ros/crystal/setup.bash && source install/local_setup.bash
ros2 launch micro-ros_crazyflie_demo_remote launch_drone_position.launch.py

RVIZ windows should be open, and a Crazyflie 2.1 drone model should represent the drone attitude
and position along with a historic path.

Run attitude visualizer:

cd crazyflie_demo
source /opt/ros/crystal/setup.bash && source install/local_setup.bash
ros2 launch micro-ros_crazyflie_demo_remote launch_drone_attitude.launch.py

RVIZ windows should be open and a Crazyflie 2.1 drone model should represent only the drone
attitude.

11

D5.7 (preliminary number)

Tracing Tools
Software Release

Grant agreement no. 780785
Project acronym OFERA (micro-ROS)
Project full title Open Framework for Embedded Robot Applications
Deliverable number D5.7 (preliminary number)
Deliverable name Tracing Tools – Software Release
Date December 2019
Dissemination level public
Workpackage and task 5.3
Author Ingo Lütkebohle (Bosch)
Contributors
Keywords micro-ROS, robotics, ROS, microcontrollers, tracing
Abstract This document provides links to the released software

and documentation for deliverable D5.7 Tracing Tools -
Software Release of the works on tracing for micro-ROS in
WP 5, as discussed in the project review 10 September
2019 and defined in the amendment to the Grant Agree-
ment from December 2019.

D5.7 (preliminary number): Tracing Tools – Software Release

Contents

1 Overview to Results 2

2 Links to Software Repositories 2

3 Annex 1: Webpage on Tracing 2

3.1 Introduction . 2

3.2 Setup . 3

3.3 Simple tracing example . 4

3.4 Callback duration analysis . 6

3.5 Relevant links . 7

1

D5.7 (preliminary number): Tracing Tools – Software Release

1 Overview to Results

This document provides links to the released software and documentation for new deliverable Trac-
ing Tools - Software Release of the works on tracing for micro-ROS (and ROS 2 in general) in WP 5, as
discussed in the project review 10 September 2019.

As an entry-point to all software and documentation, we created a dedicated webpage on the micro-
ROS website: https://micro-ros.github.io/tracing/

2 Links to Software Repositories

The repositories for tracing are found at https://gitlab.com/micro-ROS/ros_tracing. These include
a number of release-management related repositories as well. The main technical repositories are:

• https://gitlab.com/micro-ROS/ros_tracing/ros2_tracing: The tracing abstraction API and
related tools for testing and launching.

• https://gitlab.com/micro-ROS/ros_tracing/tracetools_analysis: The data-reading and
aggregation modules for trace data analysis, a “verb” for the ros2 CLI tool to invoke them,
and example Jupyter notebooks for visualization.

The ROS 2 framework instrumentation has been merged into ROS 2 mainline with the following two
pull requests:

• https://github.com/ros2/rclcpp/pull/789: PR for rclcpp
• https://github.com/ros2/rcl/pull/473: PR for rcl

3 Annex 1: Webpage on Tracing

Content of https://micro-ros.github.io/tracing/ from 19th December 2019.

1. Introduction
2. Setup
3. Simple tracing example
4. Callback duration analysis
5. Further Information

3.1 Introduction

Robotic systems can be hard to analyze and debug, and one big reason is that internal processing is
always changing in response to sensory input. Therefore, the ability to continuously monitor and
record data about the robotic software is important, to make sure it behaves deterministically, stays
within resource limits, and also for later analysis.

2

https://micro-ros.github.io/tracing/
https://gitlab.com/micro-ROS/ros_tracing
https://gitlab.com/micro-ROS/ros_tracing/ros2_tracing
https://gitlab.com/micro-ROS/ros_tracing/tracetools_analysis
https://github.com/ros2/rclcpp/pull/789
https://github.com/ros2/rcl/pull/473
https://micro-ros.github.io/tracing/

D5.7 (preliminary number): Tracing Tools – Software Release

On modern systems, the operating system and other running software has a big influence on the
exact execution of the software. Therefore, we also need information about these aspects.

Tracing is a well-established method that allows to record run-time data, which is already well in-
tegrated with operating systems. For example, we can trace when a process is being scheduled, or
when I/O occurs. Current tracing systems have minimal overhead and are very configurable to
reduce overhead (and data size) even further.

This post aims to introduce our ongoing effort to instrument ROS 2 and provide trace analysis tools.
I’ll show how we can use the instrumentation and the current analysis tools to plot callback dura-
tions, like the plot shown below.

3.2 Setup

We’ll assume you’re using Ubuntu 18.04 bionic.

First, let’s install LTTng.

$ sudo apt-add-repository ppa:lttng/stable-2.10

3

https://lttng.org/docs/#doc-ubuntu-ppa

D5.7 (preliminary number): Tracing Tools – Software Release

$ sudo apt-get update
$ sudo apt-get install lttng-tools lttng-modules-dkms liblttng-ust-dev

We’ll also need these Python packages to read traces and setup a tracing session through ROS.

$ sudo apt-get install python3-babeltrace python3-lttng

If the ROS 2 development tools and dependencies are not installed on your machine, install them
by following the System setup section here.

Now we’ll download all the necessary packages. First, create your workspace.

$ mkdir -p ~/ros2_ws/src
$ cd ros2_ws/

The rcl and rclcpp instrumentation has been integrated into Eloquent, so we simply need to recom-
pile ros2_tracing & compile tracetools_analysis.

$ wget https://gitlab.com/micro-ROS/ros_tracing/ros2_tracing/raw/master/tracing.repos
$ vcs import src < tracing.repos

Now let’s build and source.

$ colcon build --symlink-install
$ source install/local_setup.bash

3.3 Simple tracing example

Let’s try tracing with a simple ping-pong example.

The tracetools_test package contains two nodes we can use. The first node, test_ping, publishes
messages on the ping topic and waits for a message on the pong topic before shutting down. The
second node, test_pong, waits for a message on the ping topic, then sends a message on the pong
topic and shuts down.

To trace these nodes, we can use the example.launch.py launch file in the tracetools_launch pack-
age.

$ ros2 launch tracetools_launch example.launch.py

4

https://index.ros.org/doc/ros2/Installation/Dashing/Linux-Development-Setup/#system-setup

D5.7 (preliminary number): Tracing Tools – Software Release

As shown above, you should see a few output lines, and that’s it.

By default, traces are written in the ~/.ros/tracing/ directory. You can take a look at the trace’s
events using babeltrace.

$ cd ~/.ros/tracing/
$ babeltrace my-tracing-session/

If you only want to see the ROS events, you can instead do:

$ babeltrace my-tracing-session/ust/

The last part of the babeltrace output is shown above. This is a human-readable version of the raw
Common Trace Format (CTF) data, which is a list of events. Each event has a timestamp, an event

5

D5.7 (preliminary number): Tracing Tools – Software Release

type, some information on the process that generated the event, and the fields corresponding to the
event type. The last events of our trace are pairs of ros2:callback_start and ros2:callback_end
events. Each one contains a reference to its corresponding callback.

It’s now time to process the trace data! The tracetools_analysis package provides tools to import
a trace and process it. Since reading a CTF trace is slow, it first converts it to a file which we can read
much faster later on. Then we can process it to get pandas dataframes and use those to run analyses.

$ ros2 trace-analysis process ~/.ros/tracing/my-tracing-session/ust/

The output of the process command is shown above. In the last dataframe, named “Callback in-
stances,” you should see three rows. The first one is the timer callback that triggered the ping-pong
sequence. The second one is the ping callback, and the third one is the pong callback! Callback
function symbols are shown in the previous dataframe.

This is simple, but it isn’t really nice visually. We can use a Jupyter notebook to analyze the data and
display the results.

3.4 Callback duration analysis

Add the following line to the arguments of each of the two Node objects in your launch file, which
should be under ros2_ws/src/ros2/tracing/tracetools_launch/launch/. It will stop the nodes
from shutting down after 1 exchange.

arguments=['do_more']

Delete the previous trace directory, and execute the launch file again. Let it run for some time (e.g. 10-
20 seconds), then kill it with Ctrl+C.

To run an analysis that displays durations of callbacks over time, use this Jupyter notebook, which
should be under ros2_ws/src/tracetools_analysis/tracetools_analysis/analysis/.

6

https://gitlab.com/micro-ROS/ros_tracing/tracetools_analysis/blob/master/tracetools_analysis/analysis/callback_duration.ipynb

D5.7 (preliminary number): Tracing Tools – Software Release

The resulting plots for the /ping and /pong subscriptions are shown below. We can see that the
durations vary greatly.

3.5 Relevant links

The tracing packages can be found in the ros2_tracing repo. The analysis tools can be found in the
tracetools_analysis repo.

7

https://gitlab.com/micro-ROS/ros_tracing/ros2_tracing
https://gitlab.com/micro-ROS/ros_tracing/tracetools_analysis

	Embedded_TF_Y2
	Notice

	Community_Demos_Y2
	Overview to Results
	Links to Software Repositories
	Software for Kobuki Community Demo
	Software for Crazyflie Demo and the Combined Demo

	Annex 1: Webpage on Kobuki Demo
	Annex 2: Webpage on Crazyflie Demo
	Index
	Setup
	Required Hardware
	Installation
	Install external ROS 2 nodes
	Build and flash Crazyflie 2.1 firmware
	Install Crazyflie Client + Bridge
	Build and flash Kobuki Turtlebot 2 firmware

	Usage
	Run Kobuki Turtlebot 2 Node
	Run Crazyflie 2.1 Node
	Run external ROS 2 nodes
	Run RVIZ visualizers

	Tracing_Tools_Software_Release
	Overview to Results
	Links to Software Repositories
	Annex 1: Webpage on Tracing
	Introduction
	Setup
	Simple tracing example
	Callback duration analysis
	Relevant links

