
D2.8
Bridge logic software release

Initial Y1

Grant agreement no. 780785
Project acronym OFERA
Project full title Open Framework for Embedded Robot Applications
Deliverable number D2.8
Deliverable name Bridge logic software release
Date June 2019
Dissemination level public
Workpackage and task 2.3
Author Juan Flores Muñoz and Iñigo Muguruza Goenaga

(Acutronic Robotics)
Contributors
Keywords micro-ROS, robotics, ROS, microcontrollers, simulator,

simulation
Abstract micro-ROS hardware bridge initial release

D2.8: Bridge logic software release – Initial Y1

Contents

1 Summary 2

2 Acronyms and keywords 2

3 Overview to results 2

4 Link to software repositories 2

5 Requirements 3

6 Support and tooling development 4
6.1 Cross-compilation process . 4
6.2 Bridge set-up . 5

7 Tutorials and demonstrations 5

1

D2.8: Bridge logic software release – Initial Y1

1 Summary

The objective of this task is to provide a device which can work as hardware bridge between ROS 2
and micro-ROS. This device must have all the communications interfaces required, such as Ethernet,
serial or 6LOWPAN. This hardware bridge will allow to publish the micro-ROS topics created by
the MCU to the ROS2 network. For this purpose, we have selected the Raspberry Pi embedded
board, as it is a popular platform extended among developers, and, additionally, as it meets the
requirements and other wishes we consider important. In order to facilitate the usage of the bridge,
we have written tutorials and developed a demonstration.

2 Acronyms and keywords

Acronym Explanation
6LOWPAN IPv6 over Low power Wireless Personal Area Networks
YAML YAML Ain’t Markup Language
SPI Serial Peripheral Interface
ROS Robot Operating System

3 Overview to results

4 Link to software repositories

Bridge set-up tools and execution instructions at deliverable handling:

• Git repository: https://github.com/micro-ROS/micro-ROS-bridge_RPI

– Branch name: master
– Commit Hash: 09d4f3c

Polly fork for micro-ROS cross-compilation:

• Git repository: https://github.com/micro-ROS/polly

– Branch name: master
– Commit Hash: 49d79c1

ROS2_RASPBIAN_TOOLS fork for micro-ROS and ROS2 cross-compilation:

• Git repository: https://github.com/micro-ROS/ros2_raspbian_tools

– Branch name: master
– Commit Hash: ca1910f

2

https://github.com/micro-ROS/micro-ROS-bridge_RPI
https://github.com/micro-ROS/micro-ROS-bridge_RPI/commit/ad68070a4b6d9c31f73acf53def0efabd9916565
https://github.com/micro-ROS/polly
https://github.com/micro-ROS/polly/commit/3ea0b426c975456445db90c13ef298490f56ec44
https://github.com/micro-ROS/ros2_raspbian_tools
https://github.com/micro-ROS/ros2_raspbian_tools/commit/125dfeaa5c3e6931cede7effd81bf7f3d2223911

D2.8: Bridge logic software release – Initial Y1

micro-ROS bridge example and validation resource list:

• Git repository: https://github.com/micro-ROS/micro-ROS_temperature_publisher_demo
– Branch name: master
– Commit Hash: f7446e4

• Git repository: https://github.com/micro-ROS/NuttX
– Branch name: uros_demo_acutronics
– Commit Hash: a54d2a6

• Git repository: https://github.com/micro-ROS/apps
– Branch name: apps_demo_hih6130
– Commit Hash: 3313a79

• Git repository: https://github.com/micro-ROS/docker
– Branch name: uros_demo_acutronics
– Commit Hash: 564f6a3

5 Requirements

The requirements that are derived into the hardware bridge are defined by micro-ROS features.
Firstly, regarding communication means, as the micro-ROS use-cases contemplates the use of
6LOWPAN, serial and Ethernet-based communications, the hardware bridge requires to support
them. Secondly, the software support also needs to be taken into consideration. The main piece of
software to execute is the micro-ROS Agent. This element executes both, micro-ROS stack and a
fully fledged ROS 2 distribution. Thus, it requires to have a good dependency support for those
packages. This translates into having a good C++ support as well as other software packages, such
as Python or YAML.
In addition to the aforementioned requirements, we desire to have a good adoption of this bridge.
We have considered additional features community are susceptible of. This is a wish-list we have
considered:

• Inexpensive: the hardware bridge should be inexpensive, so any interested party can acquire
it.

• Popular: a platform that many people already owns and is widely accepted and supported.
• Portable: regular computers are not a good candidate for use-cases where the space is a

constrain.
• Open-source: the project is mainly based on open-source software, so the hardware bridge it

should also be open-source software based.
• Low-power consuming: in order to favor its use in various scenarios.

Taking into account the aforementioned requirements and wishes, we have decided to pick the
Raspberry Pi 3 as the hardware bridge, as it has Linux support, is able to execute ROS and is a
really popular platform in the embedded and robotics world already. Regarding communication
means, it supports serial, Ethernet and 6LOWPAN. This last one is achievable turning on a kernel
module and attaching a wireless breakout through expansion pins, using SPI interface.

3

https://github.com/micro-ROS/micro-ROS_temperature_publisher_demo
https://github.com/micro-ROS/micro-ROS_temperature_publisher_demo/commit/f92c8b7ab661a67e4af49f977fc440da774b261d
https://github.com/micro-ROS/NuttX
https://github.com/micro-ROS/NuttX/commit/540eb81dcc404b628d41273aded4f9ac28392b20
https://github.com/micro-ROS/apps
https://github.com/micro-ROS/apps/commit/2412e71e783a2dc3606d65bdcde8c6bf5e854d80
https://github.com/micro-ROS/docker
https://github.com/micro-ROS/docker/commit/710e08e80f21bd8d7dfc094660d0f7b43a82c510

D2.8: Bridge logic software release – Initial Y1

6 Support and tooling development

Once we had chosen the hardware platform we wanted to use, we thought about how to support
the software we need to execute. As the Raspberry Pi uses an ARM architecture, we need to
compile the source-code for that specific architecture. For making it easy to maintain and to use, we
decided to release a cross-compilation tool that compiles the source-code, obtaining self-contained
workspaces.

6.1 Cross-compilation process

As the micro-ROS Agent and Client can take several hours to compile in a Raspberry Pi, we
decided to find a solution that improves the compilation time and the user experience. Seeking
for a solution, we found a cross-compilation tool, and used it as a starting point. The repository
is called ros2_raspbian_tools and is a solution developed by Esteve Fernandez. This approach
builds a Raspbian image inside a Docker container. The problem of this solution is that requires a
high quantity of dependencies, that needs to be installed in the host computer. This could be a
problem, because the dependency installation is challenging, time to time.
The ROS community already offers a tutorial to resolve cross-compilation dependency issues, that
is placed here. In order to avoid host computer pollution in the cross-compilation process, we
decided to use three nested Docker files. The working flow is the following:

• First, we run a Docker(1) with Ubuntu 18.04 and do the next procedures:

– Download all the dependencies.
– Create an additional Docker(2) which can be run by the host PC.
– Add a converted Raspbian image to the previously created Docker(2).

• Docker(1) shares the files with the host PC, so the host PC will start Docker(2) adding all
the dependencies that we obtained on Docker(1).

• Docker(2) will install the dependencies needed on the Raspbian file system, and will create
the final Docker(3) which will build micro-ROS Agent, Client or ROS 2 workspaces.

• Docker(2) share the files with the host PC and starts Docker(3).
• Docker(3) will build micro-ROS Agent/Client or ROS 2 using an ARM tool-chain and will

return self-contained compilation folders, ready to be deployed in a Raspberry Pi.

To make it easier, we developed a script which automatizes all the process. The user can choose
what does she/he want to cross-compile by just adding the argument: Agent, Client or ROS2 when
running the script. This process can take around 30 minutes the first time that you execute it and,
around 10 minutes, each of the times you want to cross-compile each resource. So we can see that
we managed to cut down dramatically the compilation time.
All the aforementioned utilities are placed in the next repository:
micro-ROS-bridge_RPI, Commit 09d4f3c

4

https://github.com/esteve/ros2_raspbian_tools
https://github.com/esteve
https://index.ros.org/doc/ros2/Tutorials/Cross-compilation/
https://github.com/micro-ROS/micro-ROS-bridge_RPI
https://github.com/micro-ROS/micro-ROS-bridge_RPI/commit/09d4f3c63f7bf5c61b070b6713e31f5ea0170569

D2.8: Bridge logic software release – Initial Y1

6.2 Bridge set-up

In addition to the self-contained cross-compiled folders containing micro-ROS Agent and Client
and ROS 2, it is required to install dependencies and activate 6LOWPAN kernel module in the
Raspberry Pi Linux image. In order to install the dependencies, we have prepared README guide to
follow, located here. For enabling the kernel module, we have created a script that activates the
kernel module, located here

7 Tutorials and demonstrations

In order to validate the micro-ROS bridge, we have developed two demonstrations.
The first one, verifies the interoperability among Raspberry Pi and the Olimex STM32-E407 board,
using 6LOWPAN communication means. These demos uses a breakout board that contains a
MRF24J40 chip, manufactured by Microchip. Thanks to this chip, you can send and receive
6LOWPAN packages in both boards. He have placed the next files in the repository:

• A README file containing MRF24J40 breakout connection table, configuration commands
for both, the Raspberry Pi and the Olimex board. Also step-by-step guide for sending and
receiving the data packages.

• Raspberry Pi 6LOWPAN receiver example source-code.
• Raspberry Pi 6LOWPAN sender example source-code.

Note that the micro-ROS Agent still does not fully support 6LOWPAN communications, that is
why we haven’t test it out.
The second demonstration consists of a micro-ROS temperature publisher that is linked through
serial communication to a Raspberry Pi that acts as micro-ROS to ROS 2 bridge. In this example,
we make use of the Agent to make available the data of the temperature sensor in ROS 2. Using a
regular ROS 2 running computer that is located in the same local network, the computer is able to
fetch the sensor data.
We have uploaded a video showing how it works, you can see it here. All the information about
how to launch the tutorial is placed in a separate GitHub repository. We have also placed a new
web-page entry, so new users can see it.

5

https://github.com/micro-ROS/micro-ROS-bridge_RPI#raspbian-set-up
https://github.com/micro-ROS/micro-ROS-bridge_RPI/blob/master/RPI_6lowpan/script.sh
https://ww1.microchip.com/downloads/en/DeviceDoc/39776C.pdf
https://github.com/micro-ROS/micro-ROS-bridge_RPI/blob/master/RPI_6lowpan/Readme.md
https://github.com/micro-ROS/micro-ROS-bridge_RPI/tree/master/RPI_6lowpan/Examples/6lowpan_recv
https://github.com/micro-ROS/micro-ROS-bridge_RPI/tree/master/RPI_6lowpan/Examples/6lowpan_send
https://micro-ros.github.io/download/Dashing_post_micro-ROS_temp_publisher.mp4
https://github.com/micro-ROS/micro-ROS_temperature_publisher_demo
https://micro-ros.github.io/blog/2019/06/03/micro-ROS_temperature_publisher_demo/
https://micro-ros.github.io/blog/2019/06/03/micro-ROS_temperature_publisher_demo/

	Summary
	Acronyms and keywords
	Overview to results
	Link to software repositories
	Requirements
	Support and tooling development
	Cross-compilation process
	Bridge set-up

	Tutorials and demonstrations

